On the use of nearest feature line for speaker identification

نویسندگان

  • Ke Chen
  • Ting-Yao Wu
  • HongJiang Zhang
چکیده

As a new pattern classification method, Nearest Feature Line (NFL) provides an effective way to tackle the sort of pattern recognition problems where only limited data are available for training. In this paper, we explore the use of NFL for speaker identification in terms of limited data and examine how the NFL performs in such a vexing problem of various mismatches between training and test. In order to speed up NFL in decision-making, we propose an alternative method for similarity measure. We have applied the improved NFL to speaker identification of different operating modes. Its text-dependent performance is better than the Dynamic Time Warping (DTW) on the Ti46 corpus, while its computational load is much lower than that of DTW. Moreover, we propose an utterance partitioning strategy used in the NFL for better performance. For the text-independent mode, we employ the NFL to be a new similarity measure in Vector Quantization (VQ), which causes the VQ to perform better on the KING corpus. Some computational issues on the NFL are also discussed in this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor

Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems.  In this study, we d...

متن کامل

Speaker Recognition Based on the Use of Vocal Tract and Residue Signal LPC Parameters

The problem of text-independent speaker recognition based on the use of vocal tract and residue signal LPC parameters is investigated. Pseudostationary segments of voiced sounds are used for feature selection. Parameters of the linear prediction model (LPC) of vocal tract and residue signal or LPC derived cepstral parameters are used as features for speaker recognition. Speaker identification i...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

Fuzzy Nearest Prototype Classifier Applied to Speaker Identification

In a vector quantisation (VQ) based speaker identification system, a speaker model is created for each speaker from the training speech data by using the k-means clustering algorithm. For an unknown utterance analysed into a sequence of vectors, the nearest prototype classifier is used to identify speaker. To achieve the higher speaker identification accuracy, a fuzzy approach is proposed in th...

متن کامل

The Acquisition of Definiteness Feature by Persian L2 Learners of English

The definiteness feature in English is both LF and PF interpretable while Persian is a language in which this feature is LF-interpretable but PF-uninterpretable. Hence, there is no overt article or morphological inflection in Persian denoting a definite context. Furthermore, Persian partially encodes specificity not definiteness. In definiteness both the speaker and hearer are involved while in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2002